Информационно-познавательный сайт     Материаловедение     Электроматериаловедение  

3. Проводниковые материалы

3.2. Основные свойства и характеристики проводниковых материалов


top include

 

Меню разделов:
Аквариумистика
Биология
Вирусология
История
Материаловедение
Менеджмент
Радиоэлектроника
Фармация
Физика

 

top-2 include right include

 

Твердые металлические проводники характеризуются высокой электро- и теплопроводностью, что обусловлено особенностями металлической связи между атомами. В качестве проводников применяются также неметаллические материалы (уголь, графит, угольно-графитовые композиции, высокоионизированные газы). Они обладают механическими, физико-химическими и технологическими свойствами.

К механическим свойствам относят твердость, упругость, вязкость, пластичность, линейное расширение, хрупкость, прочность, усталость.

Твердость - это способность материала сопротивляться проникновению в него другого, более твердого тела.

Существуют различные методы определения твердости: вдавливание, царапание, упругая отдача. Наибольшее распространение получил метод вдавливания в материал стального шарика (твердость по Бриннелю), вдавливания конуса (по Роквеллу), вдавливания пирамиды (по Виккерсу).

Испытания материалов на твердость вдавливанием шарика по методу Бринелля проводят с помощью стального закаленного шарика диаметром 10,5 или 2,5 мм в испытываемый материал под действием нагрузки в течение определенного времени (рис. 3.1). Диаметр шарика, нагрузку и время выдержки под нагрузкой выбирают по специальным таблицам в зависимости от толщины и твердости материала.

 

Схема определения твердости материала по методу Бринелля 

 

Перед испытанием поверхность детали или образца зачищают напильником или наждачным кругом.

После испытания диаметр отпечатка измеряют при помощи градуированного увеличительного стекла в двух взаимно перпендикулярных направлениях. Диаметр отпечатка d зависит от твердости материала.

Твердость по методу Бринелля определяется отношением численного значения нагрузки Р к площади поверхности отпечатка FОТ и измеряется в ньютонах на квадратный метр (Н/м2):

 

 

 

К недостаткам метода Бринелля относятся:

- невозможность определять твердость проволоки и изделий толщиной менее 3 мм;

- проведение испытаний на контрольных образцах, так как на рабочих деталях остаются заметные следы от вдавливания шарика;

- невозможность испытывать материалы, твердость которых выше твердости стального шарика (450 НВ), так как при этом шарик начинает деформироваться и искажать показания;

- продолжительность процесса испытания.

Твердость материала по методу Роквелла определяют по глубине вдавливания в испытуемый материал стального шарика диаметром d = 1,59 мм под нагрузкой массой 100 кг или алмазного конуса с углом при вершине 120° при нагрузках 60 и 150 кг на твердомерах.

 

Опредление твердости материала по методу Роквелла

 

При испытании сначала прикладывают предварительную нагрузку Р0, а затем основную - Р1. Твердость при этом характеризуется разностью глубин проникновения шарика или алмазного конуса h - h0 под нагрузками Р = Р1 + Р0 и Р0 (рис. 3.2). Эта разность глубин определяется автоматическим индикатором, циферблат которого разделен на 100 делений. Циферблат имеет черную и красную шкалы. При испытаниях шариком отсчет производят по красной шкале и твердость обозначают HRB, при испытании алмазным конусом - по черной шкале и твердость обозначают HRC. Шариком определяют твердость мягких металлов, а алмазным конусом - твердых.

К достоинствам метода Роквелла относят:

- измерение твердости в более широком диапазоне (до 700 НВ);

- пригодность для определения твердости более тонких изделий, чем при методе Бринелля;

- наличие очень малых отпечатков на испытуемом образце.

Недостатком метода является необходимость подготовки образцов, соответствующих определенным требованиям (толщина образца должна быть не менее 10 глубин вдавливания, диаметр круглых образцов не должен быть меньше 10 мм).

Твердость по методу Виккерса определяют вдавливанием в испытуемый материал алмазной пирамиды с углом при вершине 136° под нагрузкой. В результате на поверхности образца остается квадратный отпечаток, длина диагонали которого характеризует твердость материала. Чем больше диагональ, тем ниже твердость. Диагонали измеряют с помощью микроскопа. Твердость по методу Виккерса HV определяют по таблицам в зависимости от длин диагоналей отпечатка (рис. 3.3).

 

Схема измерения диагонали отпечатка пирамиды

 

Этим методом можно измерять твердость мягких и твердых материалов при малой толщине образцов и деталей.

Упругость - это свойство материала восстанавливать свою форму и объем после прекращения действия внешних сил, которые вызывают их изменение.

Вязкость - это способность материала оказывать сопротивление динамическим (быстровозрастающим) нагрузкам. Вязкость оценивают с помощью прибора, который называется маятниковым копром. Образец стандартной формы свободно устанавливают на опоры копра. Маятник массой Р поднимают на высоту h2 и отпускают. Падая, маятник разрушает образец, который по инерции поднимается на некоторую высоту h1.

Работа удара в джоулях, затраченная на излом образца,

 

Wуд = P(h2-h1)   (6)

 

Ударная вязкость - это способность материала оказывать сопротивление ударным нагрузкам. Испытаниям на ударную вязкость подвергают те материалы, из которых изготавливают сталь, применяемую в условиях ударных нагрузок. Для проведения такого испытания берут стандартный образец, на котором делают надрез. Испытания образцов проводят на специальных установках - копрах маятникового типа. Образец разрушают с помощью маятника. Ударную вязкость определяют по формуле, зная работу, затраченную маятником на разрушение образца, и площадь поперечного сечения образца в месте надреза:

 

Ударная вязкость

 

В производственных условиях ан и Ан определяют по таблицам.

На ударную вязкость не испытывают такие хрупкие материалы, как чугун, силумин, закаленная инструментальная сталь.

Пластичность - это свойство материала деформироваться без разрушения под действием внешних сил и сохранять новую форму после прекращения действия этих сил. Для количественной оценки пластичности электрорадиоматериалов используют относительное удлинение образца при разрыве Δl/l и относительное сужение площади поперечного сечения образца Δs/s.

Относительным удлинением называют отношение абсолютного удлинения образца к его первоначальной расчетной длине /0, выраженной в процентах:

 

Относительное удлинение

 

Относительным сужением называют отношение абсолютного сужения площади поперечного сечения образца после разрыва к его первоначальной площади поперечного сечения, выраженное в процентах:

 

Относительное сужение

 

Значения относительного удлинения Δl/l и относительного сужения Δs/s для некоторых материалов приведены в таблице 3.2.

 

Относительные удлинения и сужения некоторых материалов

 

Для проводников, используемых в электровакуумных приборах, важной механической характеристикой материала является температурный коэффициент линейного расширения ТКl, который позволяет определять изменения любых геометрических размеров изделий (длины, ширины, толщины) при нагревании. Однако наиболее легко изменение размеров изделия при нагревании фиксируется по максимальному размеру длины. Различают температурный коэффициент линейного расширения при данной температуре ТКl и его среднее значение в интервале температур αt (1/град):

 

Температурный коэффициент раcширения

 

Зназначение ТКl твердых металлов возрастает при повышении температуры и приближении ее к температуре плавления. Минимальные значения ТКl характерны для тугоплавких металлов, которые используют для вакуум-плотных спаев со стеклом, керамикой и другими диэлектрическими материалами.

Хрупкость - это способность материалов разрушаться при приложении резкого динамического усилия. У таких хрупких материалов явление пластической деформации не наблюдается, т.е разрушение образца происходит при равенстве предела текучести σt, и предела прочности при растяжении σp. Значения относительного удлинения и относительного сужения для хрупких материалов близки к нулю.

К хрупким материалам относят стекло, керамику, фарфор, хром, марганец, кобальт, вольфрам.

Прочность - это способность материала сопротивляться действию внешних сил, не разрушаясь. Прочность определяют с помощью статического воздействия (растяжения) на материал на специальных испытательных установках, называемых разрывными машинами. Для испытания на растяжение изготавливают образцы в виде круглых стержней или пластин строго установленных размеров. Образцы закрепляют в зажимах разрывной машины и прикладывают к ним растягивающую нагрузку.

Наименьшее напряжение, при котором образец деформируется (течет) без заметного увеличения нагрузки, называется физическим пределом текучести σt:

 

Физический предел текучести

 

Напряжение, соответствующее наибольшей нагрузке Fд, предшествующей разрушению образца, называется пределом прочности при растяжении σp:

 

Предел прочности при растяжении

 

Усталость - это разрушение материала под действием небольших повторных или знакопеременных нагрузок (вибраций). Такие нагрузки испытывают, например, контакты, пружины. Под действием многократных повторно-переменных (изменяющихся только по значению) и знакопеременных нагрузок (сжатие и растяжение) металл разрушается при напряжениях, значительно меньших чем предел прочности, т.е. наступает усталость. Свойство металла выдерживать, не разрушаясь, большое число повторных или знакопеременных напряжений называется выносливостью. Испытания на выносливость проводят на специальных машинах, вращая образцы с одновременным приложением изгибающих нагрузок, создающих растяжение и сжатие.

К физико-химическим свойствам металла  относят цвет, плотность, температуру плавления, теплопроводность, тепловое расширение, электропроводность, магнитные свойства, поглощение газов, коррозионную стойкость и др.

Физико-химические свойства оценивают удельным электрическим сопротивлением ρ, удельной электрической проводимостью γ, температурным коэффициентом удельного электрического сопротивления ТКρ и коэффициентом теплопроводности.

По плотности металлы разделяют на легкие и тяжелые.

К легким относят те металлы, плотность которых меньше 5 Мг/м3. Одним из наиболее легких металлов считается натрий, плотность которого меньше плотности воды.

К тяжелым относят подавляющее большинство металлов, используемых в технике (железо, медь, никель, олово и др.).

Удельное электрическое сопротивление для образцов правильной формы

 

Удельное электрическое сопротивление

 

Величину ρ измеряют в омах на метр (Ом • м), однако для практических целей 1 Ом • м слишком большое значение, поэтому этот параметр чаще всего выражают в более мелких единицах, например в микроомах на метр. Диапазон значений ρ металлических проводников (при нормальной температуре) от 0,016 для серебра до 10 мкОм-м для некоторых сплавов.

Значения ρ металлов в нормальных условиях отличаются друг от друга примерно в 100 раз.

Сопротивление проводников Rs на высоких частотах существенно больше их сопротивления на постоянном токе вследствие того, что высокочастотное поле проникает в проводник на небольшую глубину. Чем выше частота поля, тем на меньшую глубину оно проникает в проводник. Это явление получило название поверхностного эффекта. За глубину проникновения тока в проводник на данной частоте условно принимают глубину, на которой плотность тока уменьшается в 2,7 раза по сравнению с ее значением на поверхности проводника.

Величину, обратную удельному электрическому сопротивлению ρ, называют удельной электрической проводимостью (См/м):

 

Удельная электрическая проводимость

 

Удельное электрическое сопротивление металлов зависит от температуры. Эта зависимость определяется температурным коэффициентом удельного электрического сопротивления (1/град), который при данной температуре вычисляют по формуле

 

Температурный коэффициент удельного электрического сопротивления

 

Для чистых металлов в твердом состоянии ТКρ должен быть близок к температурному коэффициенту объема идеальных газов, т.е. 1/273 = 0,00367 К-1. При фазовом переходе из одного агрегатного состояния в другое удельное электрическое сопротивление металлов изменяется скачкообразно. Однако у металлов, плотность которых при плавлении уменьшается (висмут, сурьма и галлий), удельное электрическое сопротивление при плавлении снижается.

Средний температурный коэффициент удельного электрического сопротивления металлов (1/град) в диапазоне температур

 

Средний температурный коэффициент удельного электрического сопротивления

 

Если через пластину площадью S и толщиной Δl за время t проходит тепловой поток энергией θ, то между поверхностями противоположных граней создается разность температур ΔT, связанная с θ соотношением

 

Поток энергии

 

Параметр λ называют коэффициентом теплопроводности. Коэффициент теплопроводности проводников прямо пропорционален их удельной проводимости. Чем выше электропроводность металла, тем больше его теплопроводность. Поэтому теплоотводящие устройства, например мощных резисторов, полупроводниковых приборов, изготавливают из металлов с высокой электропроводностью (медь, алюминий и сплавы на их основе).

К технологическим свойствам металлов относятся ковкость, свариваемость, обрабатываемость резанием, жидкотекучесть, усадка и др. Технологические свойства определяются комплексом физико-химических свойств материала. Для определения свойств материала проводят соответствующие лабораторные испытания. .

 

3.1. Классификация проводниковых материалов
3.2. Основные свойства и характеристики проводниковых материалов
3.3. Материалы с высокой проводимостью
    3.3.1. Медь и её сплавы
    3.3.2. Алюминий и его сплавы
    3.3.3. Железо и его сплавы
    3.3.4. Натрий
3.4. Материалы с высоким сопротивлением
    3.4.1. Проводниковые резистивные материалы
    3.4.2. Пленочные резистивные материалы
    3.4.3. Материалы для термопар
3.5. Проводниковые материалы и сплавы различного применения
    3.5.1. Благородные металлы
    3.5.2. Тугоплавкие металлы
    3.5.3. Ртуть Hg
    3.5.4. Галлий Ga
    3.5.5. Индий In
    3.5.6. Олово Sn
    3.5.7. Кадмий Cd
    3.5.8. Свинец Pb
    3.5.9. Цинк Zn
3.6. Сверхпроводники и криопроводники
    3.6.1. Сверхпроводники
    3.6.2. Криопроводники
3.7. Неметаллические проводниковые материалы
    3.7.1. Материалы для электроугольных изделий
    3.7.2. Проводящие и резистивные композиционные материалы
    3.7.3. Контактолы
3.8. Материалы для подвижных контактов
    3.8.1. Материалы для скользящих контактов
    3.8.2. Материалы для размыкающих контактов
3.9. Припои
3.10. Металлокерамика
3.11. Металлические покрытия
3.12. Проводниковые изделия

botton include

 


author include