Информационно-познавательный сайт     Материаловедение     Электроматериаловедение  

3. Проводниковые материалы

3.4.1. Проводниковые резистивные материалы


top include

 

Меню разделов:
Аквариумистика
Биология
Вирусология
История
Материаловедение
Менеджмент
Радиоэлектроника
Фармация
Физика

 

top-2 include right include

 

Проводниковые резистивные материалы разделяют на сплавы для проволочных резисторов (манганин, константан) и для электронагревательных элементов (нихром, фехраль, хромаль).

К проволочным резистивным материалам предъявляются следующие требования:

- удельное электрическое сопротивление ρ при нормальной температуре не менее 0,3 мкОм*м и высокая стабильность его значения во времени;

- малый температурный коэффициент термоЭДС в паре сплава с медью;

- малый температурный коэффициент удельного электрического сопротивления ТКρ;

- технологичность.

В отличие от материалов с высокой проводимостью (чистых металлов) резистивные материалы представляют собой в основном сплавы с заметно деформированной кристаллической решеткой, что характерно для твердых растворов металлов. Для получения проволоки разного диаметра, применяемой для изготовления проволочных резисторов различного назначения, наибольшее распространение получили сплавы на основе меди и никеля. Важнейшие электрические характеристики этих сплавов зависят от процентного соотношения меди и никеля.

Манганин - сравнительно пластичный сплав, получивший свое название из-за содержания в нем марганца (от лат. manganum). Его примерный состав: медь Cu - 85% (большое содержание меди придает сплаву желтоватый цвет), марганец Mn - 12%, никель Ni - 3%. Основные свойства манганина приведены в табл. 3.4.

 

Основные свойства проводниковых сплавов с высоким сопротивлением

 

Для обеспечения малого значения температурного коэффициента удельного электрического сопротивления ТКρ и стабильности коэффициента удельного электрического сопротивления ρ манганин подвергают отжигу в вакууме при температуре примерно 550...600°С в течение 10 ч с последующим медленным охлаждением. Иногда дополнительно отжигают намотанные катушки при температуре 200 °С.

После прокатки и волочения из манганина можно получить проволоку диаметром до 0,02 мм. При температуре 60°С манганиновая проволока начинает окисляться, поэтому ее применяют в стеклянной изоляции, которая отличается высокими электроизоляционными свойствами, повышенной нагрево- и влагостойкостью.

Микропровод используют для конструирования миниатюрных высокоточных элементов, в том числе прецизионных резисторов больших номиналов.

К недостаткам манганинового микропровода относят невысокую воспроизводимость характеристик и пониженную гибкость из-за хрупкости стеклянной изоляции.

Константан представляет собой твердый раствор никеля и меди, получивший свое название за высокое постоянство коэффициента удельного электрического сопротивления ρ (константа) при изменении температуры. Вредной примесью для константана является сера S, образующая с никелем эвтектику с низкой температурой плавления. При этом связь между зернами сплавляемых компонентов нарушается и переработка слитков в проволоку становится невозможной. Эвтектика способствует развитию межкристаллитной коррозии. Для устранения вредного влияния серы в состав сплава вводят марганец. После гомогенизации (процесс получения однородного строения или состава металлов, сплавов, растворов и т.д.) константановые слитки подвергают прокатке и волочению и протягивают в проволоку диаметром до 0,02 мм. Ориентировочный состав константана: медь Cu - 58,5%, никель Ni - 40%, марганец Mn - 1,5%.

Основные свойства константана см. в табл. 3.4.

Нагревостойкость константана выше, чем манганина, предельно допустимая температура при длительной работе достигает 500 °С. При нагревании до высоких температур (примерно 900 °С) константан окисляется с образованием оксидной изолирующей пленки. Это позволяет применять константан для изготовления реостатов, резисторов и электронагревательных элементов без специальной межвитковой изоляции. Однако в паре с медью константан создает сравнительно высокую термоЭДС, что затрудняет использование константановых резисторов в точных измерительных схемах. Но это же свойство константана позволяет использовать его в паре с медью или железом для изготовления термопар. Константан применяют для изготовления потенциометров, гасящих резисторов. Широкому применению константана препятствует его повышенная стоимость из-за большого содержания в нем дефицитного никеля.

К сплавам для электронагревательных элементов предъявляются следующие требования:

- высокий коэффициент удельного электрического сопротивления ρ,

- малый температурный коэффициент удельного электрического сопротивления ТКρ,

- длительная работа на воздухе при высоких температурах (иногда до 1000°С и даже выше),

- технологичность,

- невысокая стоимость,

- доступность компонентов.

К нагревостойким сплавам относят сплавы на основе железа, никеля, хрома и алюминия. Высокая нагревостойкость этих сплавов достигается благодаря введению в их состав достаточно большого количества металлов, которые образуют при нагреве на воздухе сплошную оксидную пленку.

Нихромы представляют собой твердые растворы никель-хром (Ni-Cr) или тройные сплавы никель-хром-железо (Ni-Cr-Fe).

Железо вводится в сплав для обеспечения лучшей обрабатываемости и снижения стоимости, но в отличие от никеля и хрома железо легко окисляется, что приводит к снижению нагревостойкости сплава; содержание хрома придает высокую тугоплавкость оксидам. Близость значений температурных коэффициентов линейного расширения ТК/этих сплавов и их оксидных пленок повышает стойкость хромоникелевых сплавов при высокой температуре воздуха. Растрескивание оксидных пленок происходит при резких сменах температуры. В результате кислород воздуха проникает в образовавшиеся трещины и продолжает процесс окисления. Поэтому при многократном кратковременном включении электронагревательного элемента из нихрома он перегорает значительно быстрее, чем в случае непрерывной работы при той же температуре. Для увеличения срока службы трубчатых нагревательных элементов нихромовую проволоку помещают в трубки из стойкого к окислению металла и заполняют их диэлектрическим порошком с высокой теплопроводностью (магнезий Mg). Такие нагревательные элементы применяют, например, в электрических кипятильниках, которые могут работать длительное время.

Нихромовая проволока применяется для изготовления проволочных резисторов, потенциометров, паяльников, электропечей и пленочных резисторов интегральных схем.

Плавка нихромовых сплавов осуществляется в высокочастотных вакуумных печах. Полученные после плавки отливки обжимаются до 12 мм, а затем на волочильных станках изготавливают проволоку диаметром до 0,12 мм.

Как и константаны, нихромы содержат большое количество дорогого дефицитного никеля.

Хромоалюминиевые сплавые сплавы фехраль и хромаль намного дешевле нихромов, так как хром и алюминий сравнительно дешевле и менее дефицитны. Однако они менее технологичны, более твердые и хрупкие. Из них получают проволоку большего диаметра и ленты с большим поперечным сечением, поэтому их используют в электронагревательных устройствах большей мощности и промышленных электрических печах.

 

3.1. Классификация проводниковых материалов
3.2. Основные свойства и характеристики проводниковых материалов
3.3. Материалы с высокой проводимостью
    3.3.1. Медь и её сплавы
    3.3.2. Алюминий и его сплавы
    3.3.3. Железо и его сплавы
    3.3.4. Натрий
3.4. Материалы с высоким сопротивлением
    3.4.1. Проводниковые резистивные материалы
    3.4.2. Пленочные резистивные материалы
    3.4.3. Материалы для термопар
3.5. Проводниковые материалы и сплавы различного применения
    3.5.1. Благородные металлы
    3.5.2. Тугоплавкие металлы
    3.5.3. Ртуть Hg
    3.5.4. Галлий Ga
    3.5.5. Индий In
    3.5.6. Олово Sn
    3.5.7. Кадмий Cd
    3.5.8. Свинец Pb
    3.5.9. Цинк Zn
3.6. Сверхпроводники и криопроводники
    3.6.1. Сверхпроводники
    3.6.2. Криопроводники
3.7. Неметаллические проводниковые материалы
    3.7.1. Материалы для электроугольных изделий
    3.7.2. Проводящие и резистивные композиционные материалы
    3.7.3. Контактолы
3.8. Материалы для подвижных контактов
    3.8.1. Материалы для скользящих контактов
    3.8.2. Материалы для размыкающих контактов
3.9. Припои
3.10. Металлокерамика
3.11. Металлические покрытия
3.12. Проводниковые изделия

botton include

 


author include