Информационно-познавательный сайт     Материаловедение     Электроматериаловедение  

3. Проводниковые материалы

3.7.1. Материалы для электроугольных изделий


top include

 

Меню разделов:
Аквариумистика
Биология
Вирусология
История
Материаловедение
Менеджмент
Радиоэлектроника
Фармация
Физика

 

top-2 include right include

 

К электротехническим угольным изделиям (сокращенно электроугольные изделия) относятся щетки электрических машин, электроды для прожекторов и электролитических ванн, аноды гальванических элементов, микрофоны, содержащие угольный порошок, угольные высокоомные резисторы, разрядники для телефонных сетей.

Исходным сырьем для производства электроугольных изделий являются графит, сажа и антрацит.

Природный графит - кристаллическое вещество, одна из форм углерода слоистой структуры (углерод известен в виде трех видоизменений: алмаза, графита и аморфного углерода - угля).

Графит образует слоистую кристаллическую решетку, каждый слой которой представляет собой шестиугольную сетку с расположенными в узлах атомами углерода. Отдельные слои отстоят друг от друга на большее расстояние, чем атомы между собой внутри каждого слоя, поэтому графит легко отслаивается, что ценно для работы скользящих контактов. Это свойство используют также при изготовлении сухих смазочных материалов на основе графита. Его физические свойства в направлении слоистости и перпендикулярно к ней различны. Графит обладаег следующими свойствами:

- в направлении слоев электропроводность графита имеет «металлический» характер (ρ = 8 мкОм*м, ТКр = 1 • 10-3 К-1);

- с увеличением температуры прочность графита повышается;

- на воздухе горит при температуре выше 600 °С;

- при нагревании до температуры 170°С с воздухом не взаимодействует; ни при каких температурах не взаимодействует с серной, соляной и плавиковой кислотами и царской водкой;

- с концентрированной азотной кислотой вступает в реакцию, а в смеси с концентрированными азотной и серной кислотами графит (1 г) растворяется и образует графитовую кислоту;

- с расплавленными щелочами не взаимодействует.

Добывают природный графит обогащением специальных руд. Искусственные графиты получают перекристаллизацией углей при температуре 2200...2500°С. Во многих случаях им отдают предпочтение перед природными, поскольку искусственные графиты имеют очень чистый состав, а их стоимость не превышает стоимости природных графитов.

Изделия из графита можно использовать только в инертной среде или в вакууме при температуре до 2000 °С, а в среде кислорода из двуокиси углерода - при температуре до 500 °С.

Основные характеристики природного графита приведены в табл. 3.10.

 

Основные свойства природного графита

 

Графит выпускают в виде прутков, пластин, брусков.

Пиролитический углерод получают в процессе термического разложения без доступа кислорода (пиролиза) газообразных углеводородов в камере, где находятся стеклянные или керамические заготовки оснований для непроволочных резисторов. Пиролизу подвергают, как правило, углеводороды метанового ряда, обладающие способностью при высоких температурах разлагаться с образованием на изоляционных подложках пиролитического углерода. В технологических процессах изготовления непроволочных резисторов чаще всего используют метан, пары бензина или гептана. В отличие от монокристаллического графита структура пиролитического углерода не имеет строгой периодичности в расположении атомных слоев при сохранении их параллельности. Расстояние между атомами углерода у пиролитического углерода меньше, чем у графита. Пиролитический углерод состоит из отдельных поликристаллических конгломератов, осажденных на поверхность изоляционного основания (подложку). Основные свойства пленок пиролитического углерода приведены ниже.

 

 

Структура и свойства пленок пиролитического углерода зависят:

- от температуры процесса разложения углеводородов (с увеличением температуры пиролиза происходит увеличение кристаллов углерода, содержания в нем различных примесей и уменьшения удельного электрического сопротивления ρ);

- скорости проведения реакции пиролиза;

- шероховатости рельефа поверхности подложки;

- глубины вакуума.

Пиролитические пленки углерода обладают следующими свойствами:

- высокая стабильность параметров;

- низкий уровень шумов;

- небольшой и неизменный температурный коэффициент сопротивления;

- малая зависимость сопротивления от приложенного напряжения;

- стойкость к импульсным перегрузкам;

относительно низкая себестоимость.

В результате пиролиза бороорганических соединений [В(С4Н9)3 или В(С3Н7)3] получают бороуглеродистые пленки с малым температурным коэффициентом удельного электрического сопротивления ТКр.

Природный графит, сажу, пиролитический углерод и бороуглеродистые пленки используют в качестве проводящих материалов для непроволочных линейных резисторов, которые должны иметь малую зависимость электрического сопротивления от напряжения и высокую стабильность при повышенной температуре и влажности. Непроволочные резисторы отличаются от проволочных меньшими размерами и высоким верхним пределом номинального сопротивления. Угольные материалы используют для изготовления щеток.

Щетки служат для образования скользящего контакта между неподвижной и вращающейся частями электрической машины. Различные марки щеток отличаются по значению удельного электрического сопротивления, допустимой плотности тока, коэффициенту трения, линейной скорости на коллекторе, составу, технологии изготовления, размеру (прилегающая к коллектору контактная поверхность щетки может иметь размеры от 4x4 до 35x35 мм, высота щетки 12...70 мм).

Промышленность выпускает щетки различных марок: угольно-графитные (Т и УГ), графитные (Г), электрографитированные, т. е. подвергнутые графитированию (ЭГ); медно-графитные с содержанием меди, что дает снижение электрического сопротивления и незначительное контактное падение напряжения между щеткой и коллектором.

Сажи представляют собой мелкодисперсный углерод с примесью смолистых веществ. Лаки с добавками углерода обладают широким диапазоном удельного электрического сопротивления (0,01...400 Ом*м).

Для получения стержневых электродов сажу и графит смешивают со связующим материалом, в качестве которого используют каменноугольную смолу, а иногда жидкое стекло. Полученную массу продавливают через мундштук или прессуют в соответствующих пресс-формах и подвергают термообработке. От режима обжига зависит форма, в которой углерод находится в изделии. При высоких температурах обжига (2200 °С) углерод искусственно переводится в форму графита, размеры кристаллов графита увеличиваются, повышается проводимость материала и снижается его твердость. Этот процесс называют графитированием.

Антрацит представляет собой блестящий, черного цвета ископаемый уголь с наиболее высокой степенью изменения структуры в ряду каменных углей. Горит слабым пламенем, почти без дыма, не спекается. Антрацит используют в виде угольных порошков и угольных материалов.

Угольные порошки для микрофонов получают дроблением антрацита. Удельное электрическое сопротивление порошка зависит от размеров зерен, плотности засыпки порошка в форму и режимов термообработки. Мелкозернистые порошки получают после просеивания через сито с 52 отверстиями на 1 см2, а крупнозернистые - через сито с 45 отверстиями на 1 см2. В процессе обжига при температуре 600... 800 °С увеличивается удельное электрическое сопротивление порошка. Удельное электрическое сопротивление мелкозернистого порошка ρ = 0,4 Ом * м.

Угольные материалы (измельченный антрацит со связкой) для угольных электродов, предназначенных для работы при высоких температурах, обжигают при температурах до 3000 °С.

Особенностью угольных изделий является то, что они имеют отрицательный температурный коэффициент удельного электрического сопротивления ТКр.

 

3.1. Классификация проводниковых материалов
3.2. Основные свойства и характеристики проводниковых материалов
3.3. Материалы с высокой проводимостью
    3.3.1. Медь и её сплавы
    3.3.2. Алюминий и его сплавы
    3.3.3. Железо и его сплавы
    3.3.4. Натрий
3.4. Материалы с высоким сопротивлением
    3.4.1. Проводниковые резистивные материалы
    3.4.2. Пленочные резистивные материалы
    3.4.3. Материалы для термопар
3.5. Проводниковые материалы и сплавы различного применения
    3.5.1. Благородные металлы
    3.5.2. Тугоплавкие металлы
    3.5.3. Ртуть Hg
    3.5.4. Галлий Ga
    3.5.5. Индий In
    3.5.6. Олово Sn
    3.5.7. Кадмий Cd
    3.5.8. Свинец Pb
    3.5.9. Цинк Zn
3.6. Сверхпроводники и криопроводники
    3.6.1. Сверхпроводники
    3.6.2. Криопроводники
3.7. Неметаллические проводниковые материалы
    3.7.1. Материалы для электроугольных изделий
    3.7.2. Проводящие и резистивные композиционные материалы
    3.7.3. Контактолы
3.8. Материалы для подвижных контактов
    3.8.1. Материалы для скользящих контактов
    3.8.2. Материалы для размыкающих контактов
3.9. Припои
3.10. Металлокерамика
3.11. Металлические покрытия
3.12. Проводниковые изделия

botton include

 


author include